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WHAT WE DID 
This ongoing working document was produced as the final project of the AI 
Alignment Course by Blue Dot Impact and has a first due date in June 2024. The 
project is based on a Multi Agent Reinforcement Learning  simulation that explores 
the tragedy of the commons dilemma. We explored the following research 
questions: 

●​ In scenarios where the tragedy of the commons can be assumed, what 
elicits cooperation in multiagent systems? 

●​ What kind of relevant AI Safety insights can we extract from exploring 
cooperative multiagent systems? 

 
To discuss this question, we conducted several experiments that:  

1.​ Introduced evaluations. Measuring agent generalization and capabilities in 
various setups , comparing focal population performance across scenarios, and 
focal population versus background population. 

2.​ Introduced changes to the game environment and dynamics. By changing 
resource respawn rates we examined the risks of overharvesting and the 
agents’ ability to maintain equilibrium in scarce and abundant environments. 
By modifying the environment we tested the resilience of AI systems to 
environmental changes, introducing concepts like private property. 

3.​ Disabled the ability of agents to punish each other. We examined the risks 
associated with a lack of punitive measures and removing social norms 
enforcement. We called this agent no_zap , and created a specific substrate 
called commons_harvest_disabled_punishment  

4.​ Modified the reward signal during training. From an AI Safety standpoint, this 
experiment examines the potential for misaligned incentives leading to selfish 
behavior.  We called these agents Farmer, and created a specific substrate 
called commons_harvest_farmer , together with a specific farmer lua 
component.  

5.​ Had discussions about risks in Multiagent systems and highlighted one 
specific situation within our exercise in melting-pot and the tragedy of the 
commons dilemma.. 

 

https://github.com/whymath/Melting-Pot-MARL
https://www.youtube.com/watch?v=FEIA6xzBNQk
https://aisafetyfundamentals.com/alignment-course-details/
https://aisafetyfundamentals.com/alignment-course-details/


 
 

 
Simulation 1. Commons harvest open substrate mimicking the tragedy of the commons dilemma. 
Trained under a set of fully independent learning agents. In this game, agents must collect apples while 
ensuring the sustainability of the apple field. If the last apple disappears, the apple field is depleted. The 
agents can zap other agents, enabling punishment as a social norm. This is considered a mixed-motive 
game that balances competitive with cooperative efforts, as the agents must gather the highest number 
of apples (competition) but also must let the apple field regrow (cooperation) 

WHY COOPERATION?  
 
 ​ According to Dafoe et al[1], Cooperation plays a big part in humanity's progress 
and success, and AI that cooperates is fundamental in a world where multiagent 
interactions will be a reality. Some mental models point to the fact that crucial crises 
confronting humanity are challenges of cooperation [2]. Some argue that a 
multi-agent learning approach may be considered a form of superintelligence 
necessary to ensure a beneficial net outcome in automated processes [3 Collective 
SupperIntelligence]. In light of this, we believe that understanding cooperation can be 
fundamental to reducing AI-related risks. 
 
​ The intersection between complex systems that require cooperation and AI has 
been proposed as a research agenda by several experts [4][5], gaining traction in 
mixed-motive games such as Diplomacy [6] and melting-pot [7]. These games 
present a real multidimensional complexity of both cooperative and competitive 
dynamics that mimics reality [8] and have been studied and classified in the AI 

https://arxiv.org/pdf/2012.08630.pdf
https://www.nature.com/articles/d41586-021-01170-0
https://en.wikipedia.org/wiki/Superintelligence:_Paths,_Dangers,_Strategies
https://en.wikipedia.org/wiki/Superintelligence:_Paths,_Dangers,_Strategies
https://www.cooperativeai.com/seminars/differential-progress-in-cooperative-ai-motivation-and-measurement
https://www.cooperativeai.com/seminars/collective-cooperative-intelligence
https://www.nature.com/articles/s41467-022-34473-5
https://arxiv.org/pdf/2211.13746.pdf
https://math.uchicago.edu/~shmuel/Modeling/Hardin,%20Tragedy%20of%20the%20Commons.pdf


community [9] [10] from some interesting perspectives such as reputation [11], 
communication [12] [13], and disagreement [14] to influence agents behavior. 

The commons dilemma 
The tragedy of the commons studies the tension between collective and 

individual rationality[15][16], or how individual choices can affect collective loss: it is 
used to describe what happens when individuals use or gather a shared 
resource—apples, in the case of commons harvest substrate—for their own benefit 
without considering the impact of their actions on the wider community. Over time, 
this selfish use can lead to the depletion or destruction of that resource, making it less 
available or even unusable for everyone. This dilemma highlights how individual 
interests, when not aligned with the common good, can lead to the ruin of shared 
resources and worse outcomes for all individuals. 

 HOW DOES COOPERATIVE AI RELATE TO AI SAFETY? 
The majority of AI Safety work is concerned with single-agent scenarios 

(individual alignment). The situation is qualitatively different in the multi-agent 
scenarios[17] where the agents have to respond to other agents' behavior, which is 
hard or impossible to control, or, for instance, where agents can communicate in a 
way that is incomprehensible to the human observer. 
 

As agents become more intelligent and capable of doing the tasks they are 
assigned to do, they are also more capable of doing harm and deceiving people. 
Center on Long Term Risks´ differential progress research agenda [18] argues for the 
need to improve multi-agent cooperative capabilities in a way that does not 
significantly increase harmful ones. This is important because cooperating capabilities 
can be detrimental to social welfare, as the underlying agents’ understanding that 
leads to cooperation can facilitate deception and coercion.  

 
There are also several coordination challenges for preventing AI conflict[19]: 

Transformative AI scenarios involving multiple systems pose a unique existential risk 
of catastrophic bargaining [17][20], a failure between multiple AI systems (or joint 
AI-human systems). It’s possible that we can’t delegate its solution to individual 
alignment, which poses interesting questions: Is individual alignment enough? What 
happens in terms of safety in a multi-agent transformative AI scenario? We are 
interested in the safety concerns related to cooperation,  broader risks, and 
experiments derived from questions. 

WHAT WE FOUND 
 

https://proceedings.neurips.cc/paper_files/paper/2017/file/2b0f658cbffd284984fb11d90254081f-Paper.pdf
https://arxiv.org/pdf/2103.04982.pdf
https://arxiv.org/pdf/1605.06676
https://arxiv.org/pdf/2303.10733.pdf
https://arxiv.org/pdf/2111.13872.pdf
https://link.springer.com/book/10.1007/978-94-010-2161-6
https://www.karltuyls.net/wp-content/uploads/2020/06/MA-DM-ICML-ACAI.pdf
https://www.lesswrong.com/posts/pkfKRG9dQr6unrhQT/why-multi-agent-safety-is-important
https://www.cooperativeai.com/seminars/differential-progress-in-cooperative-ai-motivation-and-measurement
https://longtermrisk.org/coordination-challenges-for-preventing-ai-conflict/
https://www.alignmentforum.org/s/p947tK8CoBbdpPtyK/p/8xKhCbNrdP4gaA8c3
https://web.stanford.edu/group/fearon-research/cgi-bin/wordpress/wp-content/uploads/2013/10/Rationalist-Explanations-for-War.pdf


The following section goes over our interpretations of the experiments done 
and requires some knowledge about the melting pot generalization framework: we 
recommend the reader go to the Evaluation Criteria of Generalization and Capabilities 
if they are not familiar with the Melting pot framework.  

We believe these conclusions are preliminary and could be updated by doing 
more research, by e.g increasing the number of episodes of the evaluations or training 
better agents, so we take them as preliminary insights. 
 

1.​ We were not able to outperform our trained baseline, and our agents 
were not more sustainable. What can we do next?  
 
We measured the reward of all or trained agents over different substrates and under 

different mixes of focal and background populations. When we plot the histograms of these 
rewards we see that none of our agents is clearly outperforming the baseline agent (open).  
The Y-axis shows the number of occurrences ( frequency) of rewards that fall within each bin 
of the histogram. Each bin on the X-axis represents a range of reward values.  
 

 
 
Fig1. By comparing the mean and the std of the rewards for different agents, you can get a sense of 
which agent tends to perform better or more consistently. For instance, if one agent has a higher mean 
and a smaller standard deviation compared to others, it suggests that this agent consistently achieves 
higher rewards. 
 
Insights :  

●​ All agents have similar rewards, which suggests that on average, they perform 
similarly under the given scenarios. 

●​ The standard deviations are also similar across agents, indicating that the 
variability in their performance is comparable. 

●​ The overall distribution shapes are quite similar, suggesting that the scenarios 
and experimental setups affect all agents in a relatively uniform manner. 
 

The next steps we propose to overcome this challenge are: 



○​ Farmer. Increase reward for observing apples. Changing the reward by 
an order of magnitude. 

○​ No zap. Include the reward for farmer, coexisting with disabling of the 
punishment mechanism. Including farmer ideas into a disablement 
punishment scenario. 

○​ Open. Retrain open agents with rewards designed strictly for 
punishment conditions, with reward for punishment and penalty for 
being zapped 

○​ NN Architecture change. Change the LSTM from 32 to 128 and match 
DeepMind’s Melting Pot CNN Architecture, as this doesn´t bottleneck 
training 

○​ Use scarcity and private_property created substrates for evaluation 
only. 

 

2.​ It is important to consider collusion in a MultiAgent Safety Scenario 
when punishment is disabled. 
Our results point to a new direction to study agent behavior with respect to 

punishment as a social norm in the absence of the ability to do it during training and 
their response when punishment is available during evaluation. It intends to measure 
robustness against punishment when it is disabled and the study of asymmetries in 
punishment inside the action space in multi-agent reinforcement Learning. 
 
Why is this important for AI Safety?  

●​ Lack of studies about empirical asymmetrical situations in social norms in 
Multi-agent Reinforcement Learning. 

●​ Need for conclusions concerning what happens when agents without 
punishment coexist with ones that do punish. 

●​ Offers a testbed for testing policies that might be robust against aggressive 
agents. 

 



 
​ ​ ​ Simulation 2. Melting pot commons_harvest__open substrate.  The focal agent 

population is trained in the simulation without having punishment (zap) in their action space. An 
example of a Multi-agent Reinforcement Learning collusion scenario that involves restricting action 

spaces. 
 
 

3.​ We can improve our evaluation methods 
Even though we managed to create our own set of focal vs background populations 
and were able to extract insights about evaluation, we think the project could benefit 
from:  
 

●​ Measuring the number of apple fields depleted could differentiate between 
agents that are not gathering apples but letting the apple field re-spawn, as 
right now some evaluation insights might lead to confusion concerning the 
agent response to the dilemma 

●​ Carefully craft the focal population scenarios we are interested in, and run 
evaluation for more episodes. 

●​ Choose a more statistical representation during evaluation so we can get 
more robust insights. 

●​ Measuring the number of useful zaps during evaluation. We didn't have a 
metric for measuring punishment actions. 

 



Insights trained agents 
●​ The best performance of trained agents ( focal) is in the default substrate with 

no background population. 
●​ Substrates that had agents trained on open baseline or those in which 

punishment was disabled were the ones in which agents showed less unequal 
agent behavior 

●​ Highlighted agent: No_zap  :  
○​ No default environment: apple field not depleted in eval with 10 episodes 

during 3000 timesteps.  
○​ Smaller percentage of dead substrates in all environments with default 

regrowth rate. ( behind open agent) - in between 10 % and 20%) 
○​ Final returns closer to open benchmark in average return (50) 
○​ Best focal population performance with respect to background 

sustainable visitors populations (agents trained by Deepmind). 
○​ Outperforming in all environments as a focal population with respect to 

farmer agents as the background population. 
○​ Outperforming as the focal population in 3 environments with respect to 

open agents as the background population. 
○​ Outperforming in all environments as a focal population with respect to 

scarcity as background agents. 
●​ Highlighted agent: Farmer. 

●​ Best performance in a default scenario. Highest average reward and less 
inequality among agent behavior.  

○​ Worst performance Highest overall percentage in dead substrates 
in all environments ( all above 40%) 

○​ Final returns are slightly behind the open benchmark in average 
return (50) 

○​ Outperforming as a focal population in all substrates with scarcity 
as background agents 

○​ Outperforming as a focal population in 4  substrates with no 
zapping  as background agents 

○​ Outperforming as a focal population in all substrates with scarcity 
as background agents 

Insights rest of the agents 
●​ SCARCITY    

○​ Worst default performance.  Apple field depleted after 1000 timesteps. 
○​ Evaluation experiments with respect to regrowth rate: from 100x less 

regrowth to the baseline level of regrowth, we see the level of reward 
change relatively slowly, and inequality stays relatively high. However, 
once we increase the rate of respawn by 10, we see almost a 5X increase 
in reward and a high drop in inequality. 



○​ Outperforming as the focal population in 3 environments with farmers 
as background population 

○​ Outperforming as the  focal population in 4 substrates with open as 
background agent. 

 
 
Insights framework 
Find below some insights about the Melting-pot framework that 
we found useful for our exploration and that might save time to 
people that are currently exploring the framework.  
 

●​ Create specific plots  that measure what you are interested in. (eg: the 
dilemma) 

●​ Set the background population evals dynamics and scenarios from the start. 
●​ What worked: get the dilemma into the evaluation in plots (barchats) and 

apple depletion in curve analysis. 
●​ Compare the background population with the focal population of our agents. 
●​ Compare sustainable background population with focal population trained by 

Deepmind. The best focal population should perform better with a sustainable 
background population. 

●​ FocalVSBackground can bring interesting situations that might affect safety. 
●​ Meltingpot framework understanding and control is non-trivial and has some 

learning curve. 
●​ The background population of common harvest substrate trained from 

DeepMind is trained on common_harvest_closed substrate. 
 

 

EXPERIMENTS OVERVIEW 

Table conclusion experiments 
 

Exp Name Idea Safety Impact / Discussion Conclusions 

No_zap 

Disabling zapping. Make it so 
that all agents (focal and 

background population) cannot 
zap others. 

 
 

Having access to the zap action 
allows agents to punish others 

and defend territories.  
 

In all Melting Pot scenarios, it is 
assumed that the zap action is 
necessary to maintain “order”, 

 
Found some insightful scenarios 

regarding asymmetries between agents 
that zap and agents that don't.  

 
In terms of response with respect to the 

dilemma, it was the best agent 
performing 10% below our trained 



and to not lead to the extinction 
of the commons. 

 
This could help understand if 

restricting actions can lead to a 
more cooperative agent and 

explore Collusion in Multiagent 
systems 

baseline. 
Future directions include retraining this 
agent with reward design coming from 
farmer agent, and studying more about 

its punishment conditions. 

Farmer 

Establish a reward for ensuring 
respawn. Establish a reward 

system that encourages agents 
to leave the last apple to regrow, 

fostering sustainability. 
 

 
 
 

Adjusts in-game rewards to 
promote sustainable harvesting 
and cooperation among agents. 
Encourages agents to conserve 
resources by not harvesting the 
last available resource, thereby 

allowing it to regrow and 
maintain resource availability for 

the collective. 

The results were fairly inconclusive due to 
the low reward given during training. 

Future directions include re-training and 
improving in 1 or 2 the order of 

magnitude the designed reward for 
observing apples. 

 
Future directions include retraining 

baseline with change in punishment 
actions and comparing focal VS 

background populations in this setup. 

Private_property 

Changing the location of apple 
fields and adding walls in the 
Common Harvest substrate 

 
 

Change game setup to find 
interesting situations ( number 

of apple fields, apples/agents 
ratio) and wall location 

 

This change affects how the 
environment itself constrains or 

guides agent behavior, by 
structuring physical barriers and 
resource locations which provide 
immediate visual and strategic 

feedback to the agents. 
 

Although this experiment 
primarily modifies physical 
environment structure, it 
indirectly relates to how 

resources are managed and 
accessed, influencing 

cooperative strategies by altering 
resource availability and 

accessibility 
 

The default behavior underperformed the 
rest of the agents and some other 

substrates as a partnership and closed 
inside melting-pot could be more 

insightful. 
 

No more agents will be trained on this 
substrate and it will be used for 

evaluation only purposes. 

Abundance/Scarcity 

Changing the apple respawn 
radius and growth probabilities

This directly aligns with 
adjusting how resources 

respond to agent behaviors. By 
changing the regrowth 

probabilities, we alter the 
environmental dynamics to 

 
This substrate has been proven 

interesting during evaluation to measure 
generalization toward response to 

resource changes,  
 

In the future, this substrate will be used 



: 
 

 

either encourage or discourage 
certain behaviors, aiming to 

promote sustainable resource 
management 

for evaluation only. 

 
 

Evaluation Criteria of Generalization and Capabilities  

 
Diagram 1. Meltingpot framework evaluation generalization. During training, the focal population learns 
in the environment. During evaluation, a pre-trained background population with different dynamics is 
introduced. This allows us to compare how trained agents (focal) respond to unseen dynamics in other 
agents ( background). We first explored sustainable/unsustainable and pacifist dynamics but all results 
shown in the exercise only contain visitors . 
 
​ To understand evaluation inside the melting-pot framework, we note the 
generalization capabilities that melting-pot framework offers and highlight the 



difference between the focal population and the background population: in 
essence, the focal population is the primary group of agents whose adaptability and 
generalization are measured, while the background population serves as the 
unfamiliar social partners introduced during testing to create diverse and 
unpredictable social scenarios. 

●​ Focal population: the focal population consists of the agents that are being 
evaluated for their ability to generalize to novel social situations. These agents 
are trained with access to the physical environment (substrate) but without any 
exposure to the individuals in the background population during their training 
phase. The performance of the focal population is measured in test scenarios to 
determine how well these agents can adapt to social situations involving both 
familiar and unfamiliar individuals 

●​ Background population: The background population gathers the set of 
agents that the focal population encounters during the test scenarios. These 
background agents are designed to create new social dynamics and challenges 
that the focal population has not experienced during training. By mixing the 
focal population with the background population, the evaluation aims to test 
the generalization capabilities of the focal agents to novel social interactions. 
Among the background population, we can find 4 subgroups that create 
different scenarios: visitor and visit, in which we alter the distribution of focal 
and background agents, creating a dynamic in which trained agents “visit” a 
different population or the trained agents receive visitors.  Pacifists and zappers;  

 
In order to measure generalization capabilities, we combine the different focal 

populations with the environments and different scenarios, producing a set of 
evaluations that measure in different capabilities.  

 

 
Fig2. Evaluation of focal population VS background population performance. In a nutshell, we 

put 5 agents trained with farmer conditions and 2 coming from private property and evaluated 
them in different environments. 

 
 

 Experiment 1 . Disabling Punishment 

​ Disabling the punishment mechanism tests the impact of removing social 
norms enforcement. This experiment is significant for AI Safety as it examines the 
risks associated with a lack of punitive measures, such as the breakdown of 



cooperation and an increase in selfish behaviors. It helps in understanding the 
importance of social norms and punishment in maintaining safe and cooperative 
multiagent systems. This perspective is in line with the discussions on scalable 
supervision and the enforcement of social norms to ensure safe behavior in AI 
Systems by Amodei et al. (2016)[22] 
 

 
Simulation 3.  Evaluation Focal population of agents without zapping + background 
population of agents able to zap (green+yellow agents) in commons__harvest: open 
substrate. A set of 5 agents have been trained without the punitive social norm action, 
and then are evaluated together with agents that are able to punish. 
 
​ Even though we highlighted this agent as interesting for potential studies, 
overall performance was not shown best overall. However, we encountered interesting 
behaviors of no_zapping agents when they faced both substrates in which 
punishment was enabled and disabled.  
 

https://research.google/pubs/concrete-problems-in-ai-safety/


 
Fig3. No_zap agent focal population performed better when receiving a background 

population of agents that were able to zap and other agents that were not able to zap. 
 

Varying Punishment Dynamics 

 
Beyond disabling zapping, we also investigate the effects of different zapping 

cooldowns on the agents’ behavior in order to understand more about punishment 
dynamics. The Melting Pot framework allows for the change in Zapping Cooldowns, 
which corresponds to a step interval in which the agent has to wait before being able 
to zap again.  
 

Each experiment was run over 15 episodes, on the Open Commons Harvest 
substrate with the baseline apple respawn rates. The selected Zapping Cooldown 
rates were 1, 2, 10, 200, 2000, which we refer to as “Fractions”. A Cooldown rate of 10, for 
example, means that if an agent zaps another at a given moment, it can do so again 
only after 10 timesteps. A Cooldown rate of 1 is used as a control for agents that can 
zap at each timestep. In contrast, a rate of 2000 refers to a scenario of no zaps.   

 
In this experimental setting, only the focal population was analyzed. The 

original background agents were trained by DeepMind over several more timesteps, 
and when placed together with our trained agents, would quickly deplete the apple 
orchard and impose an obstacle to our analysis over the focal population. Therefore, 
the substrate setting for this experiment does not have an initial threat to the 
sustainability of the rewards and isolates the behavior of the focal population 
according to different Fractions.   
 

We examined the effects of the Fractions on the metrics of Per Capita Returns 
and Gini Coefficient for a selection of agents trained on the Farmer, Open, No Zap, 
Scarcity, and Private Property Substrates.  



 

 

 

 



 

 
Fig4. Focal populations with various zapping cooldown dynamics 

 
Important insights from the analysis include that Fractions of Zapping 

Cooldowns began to significantly affect overall returns after 1000 steps across all 
agents, with a particular highlight to Fraction 10 for the local agent.  
 

In general, we noticed that the Gini coefficient across all agent settings 
remained consistently lower than 0.2 up until 1500 steps. However, after this mark, 
coefficients begin to diverge, with a particular highlight to the scarcity agent. The high 
variability in the Gini could indicate that as the episode progresses, the inequality of 
reward distributions among agents tends to increase, especially for Fraction 2. This 
suggests that scarcity agents become more competitive over time.  

 
We also analyzed the percentage of Fully Depleted Simulations – substrates 

where the apples have been completely consumed – across different Fractions. Open 
agents demonstrated the lowest percentages of depleted simulations. This could 
indicate that the proposed alterations in the simulation environment made the focal 
population less effective in their resource management. The exception to this trend 
was the agent No Zap simulated on Fraction 2, which exhibits less depleted 
simulations than an Open agent simulated on the same fraction.  

 



Farmer agents displayed the highest percentage of depleted simulations  on 
Fraction 1, which contrasts with the low Gini curve presented in Figure 4. This could 
suggest that despite the rewards for ensuring the sustainability of the orchard, the 
ability to constantly zap each other could have led the agents to develop more 
aggressive behavior and thus become more competitive for the rewards. However, 
the fact that the Gini coefficient curve remains low compared to other fractions may 
suggest that all agents preferred to become more competitive at once and colluded 
to consume all the apples to achieve the rewards due to intense pressure from 
zapping. The agents opted to guarantee immediate rewards rather than to plan to 
collaborate for the sustainability of the orchard. 

 
Another evidence of collusion can be noticed in the Gini coefficient spikes for 

the scarcity agents, especially after 1500 steps. However, instead of the collective 
decision to gather immediate rewards, as it happened to the Farmer agents, two or 
more Scarcity agents could have collaborated to collect apples at the detriment of 
others. In this case, the competitive pressure stems mainly from the scarcity of 
resources, rather than the zapping rate.  

 
 

 
Fig5. Percentage of fully depleted Simulations across different fractions 

 

Experiment 2 . Reward Mechanism 

Implementing different reward mechanisms investigates how incentives 
influence agent behavior. From an AI safety standpoint, this experiment examines the 
potential for misaligned incentives leading to selfish behavior. Testing various 
reward structures, it ensures that agents are guided towards cooperative and fair 
resource management, minimizing risks associated with poorly designed incentives, 
as highlighted in the work on avoiding reward hacking. 

The reward change dynamic that we propose is to reward the observer for 
observing the apple field next to them, so they can become vigilant about the 
resource depletion dynamics. 



What we found in this case is that there was no substantial difference between 
the farmer agent and the rest of the agents, so changing reward design by an order of 
magnitude comes as a rational next step for the experiments. 

 
Figure 5. Comparison of focal vs background performance in farmer agent (trained with 

reward changes) and open baseline. The farmer population overall outperforms the 
background population, but there is no consistent symmetry when they act as a background 
population with open agents as focal, which has led us to propose increasing the number of 
episodes for  evaluations 
 

Experiment 3 . Environment Modification. 
Modifying the environment tests the adaptability and robustness of agents ́ strategies. 

This is crucial for AI Safety as it helps identify how changes in environmental structures impact 
resource management and whether agents can avoid over-exploitation in dynamic scenarios.  
This experiment helps in understanding the resilience of AI systems to environmental 
changes, ensuring sustainable resource use. This aligns with the concerns about distributional 
shifts and the robustness of agent strategies in diverse environments as discussed by Amodei 
et al.[22] 

https://research.google/pubs/concrete-problems-in-ai-safety/


 
 

Experiment 4 . Resource respawn 
Varying resource respawn rates evaluate an agent's ability to manage resources 

sustainably under different conditions. This experiment is important for AI Safety because it 
examines the risks of overharvesting and the system’s ability to maintain equilibrium. It 
ensures that agents can adapt to changing resource availability without causing long-term 
depletion, a key aspect of sustainability.’ 

For this experiment, each agent was evaluated in an environment where the respawn 
rate was multiplied on a log scale ranging from 10-2 to 102, with specific intervals of 10-2, 10-1.5, 10-1, 
10-0.5, 100, 100.5, 101, 101.5, and 102.  A total of 15 evaluations were run for each experimental setup, 
with the averages being discussed below. Theoretically, this provides a scale ranging from 
extreme scarcity to extreme abundance with increased resolution on more moderate cases. 
The open substrate was used as it provides a straightforward, unaltered environment, ideal for 
examining how agents maintain a resource pool. 

 
Fig 1: Per Capita Return Default Agent​  ​  

 
​ Figure 6 . The average over 15 episodes of the average per capita returns for the 
agents. This experiment was evaluated on the commons_harvest_open substrate with agents 
trained on the same substrate under varying degrees of abundance, as represented by 
fractions depicted in the key. 

 
Figure 6 depicts the per capita return for the agent trained in the open substrate on 

the default regrowth settings. As expected, while the regrowth rate increases, agents 
generally see an increase in their per capita reward. Importantly, the graph shows that when 
agents are placed in environments with any decrease in abundance, fields are nearly 
completely depleted after only 200 time steps.  This may imply that the agents have not 
learned the importance of depleting the last apple, but rather learned behaviors that 
approximate this goal, and break down once changes in respawn rates occur. 
 
 



Fig 2: Equality Default Agent​ 

 
​ Fig 7. The average over 15 episodes Gini Coefficient for the agents. This experiment was 
evaluated on the commons_harvest_open substrate with agents trained on the same 
substrate under varying degrees of abundance, as represented by fractions depicted in the 
key. 
​  

The Gini Coefficient is a measure of inequality, where a coefficient of 1 represents a 
scenario where a single agent has the maximum reward where the others have none. A 
coefficient of 0 represents perfect equality among the agents. The graph depicts an initial 
rapid decrease in the coefficient across all levels of abundance, followed by a period of relative 
stability. At higher time intervals, a clear division occurs between agents in relative 
abundance (greens and yellows) and the agents in scarce environments (the blues and 
purples). 

 
 

Fig 8. Fully Depleted Simulations 



 
​ Fig 8. The proportion of the 15 simulations which have become fully depleted. Full 
depletion was determined by the lack of any increase in reward for 50 timesteps. The scarcity 
focal agent was trained on the commons_harvest_open environment with an abundance 
multiplier of 0.5. The no_zap agent was trained on the commons_havest_open environment 
with typical abundance but with zapping disabled. 
 
​ In Fig 8 as expected, as abundance increases, the occurrence of fully depleted 
scenarios decreases for all substrates. However, we were surprised at just how poorly all of the 
agents generalized to less abundance environments. We hypothesized that the scarcity 
agent trained in a scarce environment would be more robust against decreasing levels of 
abundance. However, this was not the case. The scarcity agent performed worse than the 
open agent trained on normal levels of abundance. 

These results could be due to our agents being poorly trained in general. As observed, 
the majority of evaluations resulted in fully depleted simulations even when being evaluated 
in their training environment. Ideally, we would be using agents that very rarely deplete the 
resources in the training environment, and then evaluate them on more scarce 
environments. This seems like a promising area for future work. 
 
 

 Safety discussion:  Centralized Learning and Collusion in MARL 
 
The basic approach in MARL is that of decentralized critique. During training, each 
agent updates their policies using their own critic computed from only their 
individual information. This reflects the realistic assumption that agents are fully 
independent and do not have access to the same information. One can expect that 
the lack of shared information is an obstacle for coordination. This motivates various 
centralized critique approaches that modify the training procedure to include shared 



information in some way. The intuitive rationale for this is that using shared 
information can allow training to capture the interdependencies between agents’ 
actions, leading to more coordinated and efficient strategies. 
 
Centralized critique comes in different flavors. On the one side, we have a centralized 
policy approach, where a single policy is being trained for all agents. This solution 
treats the multi-agent setting effectively as a single-agent one. Hence, it may be seen 
as inadequate as our practical interest is in agents that are independent, at least to 
some degree. That being said, centralized policy is definitely of theoretical interest as it 
gives an upper bound on performance of decentralized policies and hence, it can be 
used as an effective baseline. 
 
Between decentralized critique and centralized policy lie different methods which aim 
at training multiple decentralized policies using some form of centralized critic. 
During training, each agent updates its own policy but does it using shared 
information about observations made by other agents. The shared information 
appears only during training and not in evaluation. More formally, this means that 
appropriate policy gradients are estimated using joint value functions. A paper by Lyu 
et al [23] references three specific algorithms, where expected joint performance is 
conditioned on shared information about history, about state or about both history 
and state. 
 
One could argue that this decentralized policy with centralized critic is not much 
more realistic than the simple centralized policy. Indeed, if our goal is to study how 
coordination can arise between independent agents, should we bother with a 
scenario where somehow each agent knows the memory of other agents? A possible 
answer to that question could be similar as in the case of centralized policy: maybe 
the mixed approach can still serve as a benchmark for performance? 
 
Lyu et al [23] provided some insights into why such a view may be too simplified, if not 
simply false. In particular, one of their theoretical findings is that state-based 
centralized critics may increase bias, while the policy gradient variance of centralized 
critics is at least as large as that of decentralized critics. 
 
Here is something about how centralized criticism relates to multi-polar alignment 
failure. 
 

Research Literature [24] claims that there exist misconceptions regarding 
centralized critics in the current literature and shows that the centralized critic design 
is not strictly beneficial, but rather both centralized and decentralized critics have 
different pros and cons that should be taken into account by algorithmic designers. 

 

https://www.jair.org/index.php/jair/article/view/14386
https://www.jair.org/index.php/jair/article/view/14386
https://arxiv.org/pdf/2102.04402


Conclusion 
 

An important consideration with multi-agent systems is the risk of collusion. 
Collusion is generally defined as 2 or more agents (covertly) coordinating to the 
disadvantage of other agents. Many multi-agent games (including most of the ones 
described in the Melting Pot framework) prescribe fully independent learning and 
preclude communication between the agents, so in such scenarios, collusion is 
explicitly disabled. However, in open-world settings without artificial constraints, 
attempting to study and mitigate this phenomenon is critical to ensure safety. 
 

In their paper[25], Foxabbott et al define and propose interventions to mitigate 
collusion within the context of partially-observable stochastic games (POSGs), which is 
said to be a general model for real-world multi-agent AI systems. While collusion is 
commonly assumed to be covert and intentional, their definition is agnostic to both of 
these aspects and instead only focuses on mutual benefit for the colluding agents at 
the expense of others. They specify three types of interventions to prevent rational 
agents from employing such strategies (some of which we have also tested in our 
experiments): 

1)​ Adding noise to observations (similar to real-world imperfect information) - 
We did not attempt to modify agent observation spaces as part of this set of 
experiments. 

2)​ Restricting agents’ action spaces (similar to real-world regulation) - We 
attempted variations of this in our ‘no_zap’ and ‘varying punishment’ 
experiments by limiting or disabling the agents ability to zap others. In the 
‘varying punishment’ experiments where we modified zap cooldown times, we 
noticed that the Gini coefficients initially dropped quickly with timesteps and 
reached a minimum of around 0.1-0.15 by 500 timesteps (see figure 4 above). 
However as apple fields start getting depleted, we often saw an increase in the 
Gini coefficient from approximately 1500 timesteps onwards, indicating 
potential collusion among sets of agents. This was especially pronounced in the 
scarcity-trained focal agents, suggesting that environmental pressures could 
exacerbate the likelihood of collusion. 

3)​ Modifying agents’ payoffs (similar to changing incentive structures to shape 
behavior) - One method of updating the reward mechanism we experimented 
with was by training Farmer agents. In this case, the agents got a reward for 
when apples were present in their observation space, thus hopefully 
encouraging them to conserve and promote regrowth of apples. However our 
experiments comparing farmer agents to the baseline were inconclusive, 
possibly due to a low magnitude of observation-based reward. 

 

https://openreview.net/pdf?id=tF464LogjS


Another domain-independent alternative to detecting collusion in multi-agent 
systems using an information-theoretic approach has been described in a paper by 
Bonjour et al[26]. Here they propose a collusion-detecting algorithm by generating 
and analyzing a joint policy matrix based on the outcomes of either partially 
observable sequential games or repeated fully observable simultaneous games, and 
then comparing the pair-wise net influences to a collusion threshold.  
 
 
 

https://openreview.net/pdf?id=HCl41wIi9gc
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