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Report on 1D rebound of a rod
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A simplified model for a deformable rod normally impacting a rigid plane an rebounding
off of it.
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1. Objectives

e determine the peak strain on the rod when it bounces off the floor.
e determine how the peak strain depends on the parameters describing the rod and
the strength of the impact.

2. Problem data

A copper rod with length L, cross-sectional area A (not given but necessary for some
considerations), density p, Young’s modulus E and damping coefficient « is dropped form
a height h = 1m (with g = 9.8 m/s?).

3. Problem formulation

We define the location of each point on the rod as 7(z,t), where z € [0, L] is the initial
undeformed location of the rod. Hence, the displacement of each point is given by

u(z,t) =n(z,t) — z. (3.1)
In this conditions, the strain on the rod is
e = 0u = 0,n(z,t) — 1, (3.2)
and the normal stress (traction) in the rod is
T=FEe=FE(0n(zt)—1). (3.3)
Newton’s second law of motion for the rod results in
POy = 0, T — €. (3.4)
Where pdyu corresponds to ma and broken down into the pressure applied to the the
cross-section area (PA), against the internal resistance of the rod: ade is the internal
friction of the rod which resists the force applied to the rod during the impact.
Substituting equations (3.3) into (3.4) we have
Oun = 0. (n(z.0) = 1) = Se, (35)
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and substituting equation 3.2, we have

E a
Oun = ;8&77(27 t) - ;atz (8z77 (Z, t) - 1) > (3'6)
i.e.
E «
3tt77 — Zﬁzzn(zat) _ ;6t2277 (Z,t) ) (37)
This is a damped wave equation, for which we know the wave speed is

E
C=,/—. 3.8
; (3.8)

4. First simple insights

When a deformable object impacts a rigid surface, the force it receive from the surface
must be so that the impulse it causes on the object is equal to the change in momentum
of the portion of the object that has slowed to 0 velocity. It is only a portion of the object
that slows down at each instant, because there is a finite velocity for the propagation of
disturbances (the wave propagation speed).

We can therefore estimate that

/f(T)dT ~ pACtVy, (4.1)
0

where f is the vertical upward force exerted by the floor on the rod,

Vo = V/2gh, %)

and the right hand side of (4.1) is given by the mass of the portion of the object that
has slowed to zero velocity times the change in velocity it underwent.
Taking the derivative with respect to time of equation (4.1), we have

£(£) = pACVs. (4.3)

This calculation assumes that the impact speed of the rod was not greater than the
wave propagation speed through it, which is a reasonable assumption for a typical solid
rod falling from a height of one metre.

Moreover, it is clear that this is considering only the impulse needed to stop the rod,
and that the force may be applied for longer (or with greater intensity) inducing further
impulse to the rod (so that after the collision it moves upward); however, the contribution
to make the rod stop is likely where the maximum forces occur and therefore where the
maximum pressures and strains occur.

Furthermore, other factors might have a small contribution (such as the damping), but
we are safe to assume these inertial balances will dominate the impact.

Now, since we are interested in the maximum strain, which in all likelihood happens
at the leading end of the impacting rod, we can use equations (4.3) and (3.3) to obtain

Ee=P = % ~ pCVp, (4.4)
and therefore we would expect that the maximum strain be
CV¢
émax ~ =0 (4.5)

E
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Using (4.2) and (3.8) to express this estimate as a function of the original data, we have

[2gph
émax ~ % (46)

5. A more in-depth approach

At this point it is perhaps more convenient to formulate the problem in terms of the
location of the points rather than in terms of their displacement.
For an arbitrary section of the rod, of original length 6, we have

pAS.Oun(z,t) = —pgAd,
+ P(z,t)A
— P(z+4,,t)A (5.1)
— Aady, [n(z,t) — 2]
+ Aady, [n(z + 6., t) — 2]

pOun(z,t) = —pg
P(z+6,,t) — P(z,t)

5, (5.2)
+ aatzn<z + 6z7 t) _ atzn(za t) :
0.
which implies
p3tt77(27t) = —pg — 0, P + a0y..n, (5'3)

which is subject to

f(t)

0.(n(z=0,t) — z) = ~Za (5.4)
.(n(z=1,t) —2) =0, (5.5)
O:(n(z,t=0) — z) = =V, (5.6)
n(z,t=0) = z. (5.7)

6. Non-dimensionalisation
We take L, C' and the mass of the rod pAL as unit length, speed and mass, respectively,
and we define the dimensionless numbers G = gL/C?, D = «/(pCL) and U = V;/C.
Moreover, we define w(z,t) = 9n(z,t), and we have We thus have the dimensionless
problem

O = w, (6.1)
Osw = =G + 0.0 + DI, w; ()
subject to
o.m(z=0,t) =1— f(t), (%))
om(z=1,t) =1, (6.4)

azw(z - Ovt) - 7f/(t)7 (65)
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d,w(z=1,t) =0,
n(z,t=0) =z,
w(z,t=0)=-U for 0 < z < 1.

7. Numerical implementation

We use the backward Euler method in time, and second order finite differences in space

to obtain
et = Sl = nf;

Ot o k1 k41 | k41 k1 0D iy
*(52:)2(771‘—1 =207+ ) FwT — (52)2( 4
with the initial condition

7711 I ZZ;
w; = —U.

Defining “ghost points” for ¢ = 0 and i = n, + 2, we have

k+1 k+1
2 "M _ g _ fhHt
20, ’
k+1 k+1
77n2+2 _ nnz —
— )
20,
k+1 k+1 k41 k
Uy =@y  _ _ [ — f
20, Ot ’
k-+1 k+1
Wy, 42 = Wn, ™ 0
20, ’

From the equations above we have

77§+1 - 77]0€+1 - 25,2 — 26szk+17

k+1 k+1 _
nnz+2 M, — 2527

fk-',—l k

95,1
5, 2%,

k41 k+l _
wy ' —wy ' = —20,

k+1 k+1 _ Q.
Wy g — W, = 0;

which yields
ot =yt — 20, 426, f*,

n:j—ilﬂ - 775:_1 + 262»

k+1 k
f 725Zf

k41 _ . k+1
wy T =wq '+ 20, 5 5
t t

(7.1)

Wiy — 2wkt + wfj‘ll) = wf — 0G5 (7.2)

(BE)

(7.14)

(7.15)
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wfl;l_Q = wfbjl (7.16)

This means that for ¢ = 1 equation (7.2) is expressed as

) 0D
G t)Q (natt —oph+t +071) bt — ((; 2 (wett — 2wt L wh ™) = wh - 5,G;  (7.17)

and using (7.13) and (7.15) we have

]
Gp (M = 20 28 = 2t )
P (7.18)

D k+1 k
- 0 whtl 495, ! - 2(5Zf— — 2Pt 4wkt = b — 6,G;
(5 )2 2 5t 5t 1 2 1
i.e.
) 6+D
e t)z (5 =2t + )+ wf - ﬁ(wé““ — 2wyt +with)
K} oD fk+1 1
a (5 t)2 (25sz+1) * (5 )2 (252 51‘, ) - wlf (7. 9)
0t 0D k
—60:G + @(—25;:) + W(—%zaj);
or, equivalently,
O k+1 k+1 k+1 0D k+1 k+1 Ot k+1 2D k+1
- (2ng Tt — 2pf ) + it — = (Qws ! — 2wt — 2= fFHL - f
(6:)2°" 51 5 S CA R ' 32 0z (7.20)
=wk - 6,G - Qi — 2D6—jf’“.
Similarly for i = n, + 1 we have
) 0D
7 (5 t)2 (Uﬁjl 7 27’712:{1 + nfzin) + wf—i—l 7 ((; )2 (wﬁjl 7 Qwﬁjil + wftj—j»Q) - wic 7 6tG;

(7.21)

and, using equation (7.14) and (7.16), we have

1) 6+D
(5 t)g (Uﬁjl — 2775:2%1 +777’2j1 + 252) + w1{'6+1 — ﬁ(wﬁjl - 2wf7,ji1 +w§j1) = ’U)f — 525G7

(7.22)
ie.

5
— (@ — o) +w

0.
k k+1 k t
(62)° ™ et (2wt = 2wpTiy) = wi — 6,G + 25 (7.23)

A

7.1. System of equations

The finite difference equations above can be summarised in the following matrix

equation
A B ol| | [ 0 0
[ c D £ ] z;kil = { o [T F T g | (7.24)
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where A is the identity of size n, + 1, B = —§; A,

2 -2 0 0 7
1 2 -1 0 - 0
Ot 0
C 52 . )
& 0 % 0
0 o -1 2 -1
0 0 -2 2 |
moreover D = A + DC,
2
—— (6 + D
5Z(t+ )
&= 4
0
1
1
and
Ot 8. rk
s
0
g: g
0
Oy
25

(7.25)

(7.26)

(7.27)

(7.28)

This is a rectangular system that can be manipulated to solve the problem when there

is contact as well as when the rod is in the air.

8. Results
Appendix A. Matlab code

%1D impact and rebound of a rod

close all
clear
clc

%Physical parameters

%(silicon rubber made 100 times less rigid)

rho = 1100; %Density of the rod in Kg/m~3

E = 1.5E7; %Young’s modulus of the rod in N/m~2

L = .1; YLength of the rod in metres

alpha = .1; %Damping factor of the rod in Kg/(ms)

%(equivalent to dynamic viscosity)

A = .0001; %Cross-sectional area in m"2 (not given, but needed)
V_0 = sqrt(2+9.8%1); %Initial speed in metres per second

g = 9.8; Jgravity in m/s"2



Report on 1D rebound of a rod

il

e

Trailing edge
— Wave front

——Leading edg

FIGUuRrE 1. Caption

—___ |
o
o o\

[ T
(o0)

o o o o —
R



8 Carlos A. Galeano Rios

FIGURE 2. This simulation results in a maximum strain of l.(JUZS/)C’Hg/E

/%Numerical parameters

n_z = 4000; %number of segments defined on the rod

%ideally use multiple of 100 (for plotting)

n_t = 50; %number of time intervals that fit in one Unit_time
n_steps = 6*n_t; %initial choice of number of time-steps

%Base Units

Unit_length = L;
Unit_speed = sqrt(E/rho);
Unit_mass = rhoxA*L;

%Derived units

Unit_time = Unit_length/Unit_speed;

Unit_force = Unit_mass*Unit_speed”2/Unit_length;
Unit_density = Unit_mass/(Unit_length~3);

%Time step
delta_t = 1/n_t;
delta_z = 1/n_z;
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%Dimensionless numbers

DD = alpha/(rho*Unit_speed”2*Unit_time); /%Dimensionless damping
GG = g*Unit_length/(Unit_speed~2);

UU = V_0/Unit_speed;

%Variables

eta = zeros(n_z+1,n_steps+1); J%Location of points

w = zeros(n_z+1,n_steps+1l); %Velocity of displacement
f zeros(1l,n_steps+1); %Force at the contact point

%Initial values
eta(:,1) = (0:delta_z:1);
w(:,1) = -UU*xones(n_z+1,1);

%Matrices

Mat_A = eye(n_z+1);

Mat_B = -delta_t*eye(n_z+1);

Mat_C = - (delta_t/(delta_z"2))

*(-2xdiag(ones(n_z+1,1))

+ diag(ones(n_z,1),1)
+ diag(ones(n_z,1),-1)
) §

Mat_C(1,2) = 2%Mat_C(1,2);

Mat_C(end,end-1) = 2*Mat_C(end,end-1);

Mat_D = eye(n_z+1)

- DD ...
*(delta_t/(delta_z"2))
x(-2+diag(ones(n_z+1,1))

+ diag(ones(n_z,1),1)
+ diag(ones(n_z,1),-1)
)
Mat_D(1,2) = 2xMat_D(1,2);
Mat_D(end,end-1) = 2*Mat_D(end,end-1);
Mat_E = zeros(n_z+1,1);
Mat_E(1) = -2*xDD/delta_z-2*delta_t/delta_z;

Mat_System = [Mat_A,Mat_B,zeros(n_z+1,1);Mat_C,Mat_D,Mat_E];

/main loop

for ind_time = 1:n_steps
disp(ind_time/n_steps)
b = [eta(:,ind_time); (w(:,ind_time)-GG*delta_t*ones(n_z+1,1))];
b(n_z+2) = b(n_z+2)-2*DD*f (ind_time)*delta_z/delta_t-2*delta_t/delta_z;
b(2*n_z+2) = b(2*n_z+2)+2xdelta_t/delta_z;
Mat_System = sparse(Mat_System) ;

%First we solve without force
sol_free = Mat_System(l:end,1:end-1)\b;
if sol_free(1)<0
sol_forced = Mat_System(2:end, [2:n_z+1,n_z+3:end])\b(2:end);



10 Carlos A. Galeano Rios

eta(l,ind_time+1) = 0;
w(l,ind_time+1) = 0;
eta(2:end,ind_time+1) = sol_forced(l:n_z);
w(2:end,ind_time+1) = sol_forced(n_z+1:2%n_z);
f(ind_time+1) = sol_forced(end);
else
eta(:,ind_time+1) = sol_free(l:n_z+1);
w(:,ind_time+1) = sol_free(n_z+2:2*n_z+2);
end
end

%Plotting rod points

fig_a = figure

bottom = plot(delta_t*(0:n_steps),eta(l,:),’b’,’LineWidth’,2);

hold on

top = plot(delta_t*(0:n_steps),etalend,:),’r’,’LineWidth’,2);

grid on

for ind_z = 101:100:n_z
plot(delta_t*(0:n_steps),eta(ind_z,:),’k’,’LineWidth’,1)

end

wave_front = plot([0 1 1 2],[0 1 1 0],’color’,[.5 .5 .5],’LineWidth’,2);

xlabel(’$tC/L$’, ’ interpreter’,’latex’)

set(gca, ’FontSize’,16)

ylabel (’$\frac{z}{L}\ \ \ \ $’,’interpreter’,’latex’,’FontSize’,24, ’rotation’,0)

legend([bottom, top, wave_front],’Leading edge’,’Trailing edge’,’Wave front’)

print(fig_a,’-depsc’,’-r300°’, ’rod_motion.eps’)

%Plotting forces

fig b = figure;

plot(delta_t*(0:n_steps) ,f*Unit_force/(V_O*rho*A*Unit_speed),’LineWidth’,2)
grid on

xlabel (*$tC/L$’,’ interpreter’,’latex’)

ylabel (°$\ \ \ \ \ \ \ \ $’,’interpreter’,’latex’,’FontSize’,24, ’rotation’,0)
set(gca, ’FontSize’,16)

legend (’$\frac{f}{\rho A C V_0} $’,’interpreter’,’latex’,’FontSize’,24)
print(fig_b,’-depsc’,’-r300’, ’force.eps’)

%strain
strain = zeros(size(eta));
for ind_time = 1:n_steps+1
strain(1l,ind_time) = f(ind_time)*Unit_force/(E*A);
for ind_z = 2:n_z
strain(ind_z,ind_time) = 1 ...
-( eta(ind_z+1,ind_time)
- eta(ind_z-1,ind_time)
) ...
/(2xdelta_z);
end
end



Report on 1D rebound of a rod 11

%Plotting strain

fig _c = figure;

surf (delta_t*(0:n_steps) ,delta_z*(0:n_z),strain*E/(rho*xUnit_speed*V_0),’LineStyle’,
colormap(cool)

xlabel (*$tC/L$’,’ interpreter’,’latex’)

ylabel(’$z/L$’, ’interpreter’,’latex’)

set(gca, ’FontSize’,16)

zlabel (’$\frac{eE}{\rho C V_0}\ \ \ \ $’,’interpreter’,’latex’,’FontSize’,24, rotat
grid on

colorbar (’EastOutside’)

print(fig_c,’-depsc’,’-r300’, ’strain.eps’)

max (max (strain*E/ (rho*Unit_speed*V_0)))



