Experimental Techniques for Topology Control
on DeepSDFs

Stephanie Atherton, Marina Levay, Ualibyek Nurgulan, Erendiro Pedro, Shree Singhi
July 2025

1 Introduction

In the Topology Control project mentored by Professor Paul Kry and project as-
sistants Daria Nogina and Yuanyuan Tao, we sought to explore preserving topo-
logical invariants of meshes within the framework of DeepSDFs. Deep Signed
Distance Functions are a neural implicit representation used for shapes in geom-
etry processing, but they don’t come with the promise of respecting topology.
After finishing our ML pipeline, we explored various topology-preserving tech-
niques through our simple, initial case of deforming a ”donut” (a torus) into a
mug.

2 DeepSDF

o o o ©® Decision
____ boundary
e of implicit
° surface
L] L]
L] .

e SDF >0
L]

@ SDF<0 "’

()

Figure 1: Signed Distance Field (SDF) representation of a 3D bunny. The
network predicts the signed distance from each spatial point to the surface.

Signed Distance Functions (SDFs) return the shortest distance from any
point in 3D space to the surface of an object. Their sign indicates spatial
relation: negative if the point lies inside, positive if outside. The surface itself
is defined implicitly as the zero-level set: the locus where SDF(x) = 0.

In 2019, Park et al. introduced DeepSDF, the first method to learn a con-
tinuous SDF directly using a deep neural network |(Park et al., 2019). Given a
shape-specific latent code z € R% and a 3D point = € R3, the network learns a
continuous mapping

fo(zi,) ~ SDF'(x),

where fy takes a latent code z; and a 3D query point z and returns an approx-
imate signed distance. The training set X := {(z,s) : SDF(z) = s}. Training
minimizes the clamped L1 loss between predicted and true distances

L(fo(x),s) = |clamp(fo(z), §) — clamp(s,)|

with
clamp(z,) = min(d, max(—d, x)).

Clamping focuses the loss near the surface, where accuracy matters most.
The parameter ¢ sets the active range.

This is trained on a dataset of 3D point samples and corresponding signed
distances. Each shape in the training set is assigned a unique latent vector z;,
allowing the model to generalize across multiple shapes.

Once trained, the network defines an implicit surface through its decision
boundary, precisely where fy(z,z) = 0. This continuous representation allows
smooth shape interpolation, high-resolution reconstruction, and editing directly
in latent space.

2.0.1 Training Field Notes

We sampled training data from two meshes, torus.obj and mug.obj using a mix
of blue-noise points near the surface and uniform samples within a unit cube.
All shapes were volume-normalized to ensure consistent interpolation.

DeepSDF is designed to intentionally overfit. Validation is typically skipped.
Effective training depends on a few factors: point sample density, network size,
shape complexity, and sufficient epochs.

After training, the implicit surface can be extracted using Marching Cubes
or Marching Tetrahedra to obtain a polygonal mesh from the zero-level set.

https://arxiv.org/pdf/1901.05103

Training Parameters

SDF Delta 1.0

Latent Mean 0.0

Latent SD 0.01

Loss Function Clamped L1

Optimizer Adam

Network Learning | 0.001

Rate

Latent Learning Rate | 0.01

Batch Size 2

Epochs 5000

Max Points per Shape | 3000
Network Architecture

Latent Dimension 16

Hidden Layer Size 124

Number of Layers 8

Input Coordinate Dim | 3

Dropout 0.0

Point Cloud Sampling

Radius

Sigma

Mu

Number of Gaussians
Uniform Samples

0.02
0.02
0.0
10
5000

For higher shape complexity, increasing the latent dimension or training

duration improves reconstruction fidelity.

Training and Validation Loss - SDF Dataset

0.06

0.04
a
8003

0.02

0.00

—e— Training Loss

0 1000

2000
Epoch

3000

4000

Figure 2: Training loss of deepsdf

5000

Latent Space Interpolation

One compelling application is interpolation in latent space. By linearly blending
between two shape codes z, and z,, we generate new shapes along the path

2) =1 —t) -2+t -2z, te][0,1].

Figure 3: Latent space interpolation between mug and torus.

While DeepSDF enables smooth morphing between shapes, it exposes a core
limitation: a lack of topological consistency. Even when the source and target
shapes share the same genus, interpolated shapes can exhibit unintended holes,
handles, or disconnected components. These are not artifacts, they reveal that

the model has no built-in notion of topology as reported by [Liu et al, 2022

2.0.2 Preserving Genus

A torus and a mug are considered the same shape up to homotopy. Homotopy is
the mathematical way of saying we can deform one shape into another without
having to cut or glue any parts of our shape. The torus and the mug are both
closed, orientable forms that are homotopic to one another, so they also have
the same genus, or number of holes, as a topological invariant. For the torus

Figure 4: The torus has genus g = 1 and is homotopic to the mug.

https://arxiv.org/pdf/2202.08345

we have 1 hole in the center and for the mug we have 1 hole between the cup
part and the handle, so both forms have genus g = 1. When passing our shapes
through our model, we want to preserve their genus. Finding a smooth path in
latent space for our shapes will help us to do so.

V—E+F+2g+#5=2

X v\\ Number of boundaries
\ Genus

Figure 5: The Euler characteristic x holds a relationship with the genus g and
boundary components b of a surface.

Euler Characteristic

This becomes especially clear when examined in low-dimensional latent spaces
(e.g., zdim = 2), where linear interpolation between two topologically similar
shapes often crosses regions of different genus. In higher-dimensional spaces, the
manifold of valid shapes may be more forgiving, potentially containing topology-
preserving paths, but they’re unlikely to be straight lines. This motivates a
broader goal: to enable smoother transitions by introducing regularization tech-
niques, such as those proposed by |[Liu et al., 2022, which encourage structural
preservation during interpolation. And a second idea is to rather than relying
on naive linear paths, we shift our focus to discovering homotopic trajectories in
latent space, paths that traverse the learned shape manifold while maintaining
geometric and topological coherence. In effect, interpolation becomes a trajec-
tory planning problem: navigating from one latent point to another without
straying into regions of invalid or unstable topology.

Latent vs. genera

Latent dim 2

-06 -04 -0.2 0.0 0.2 0.4 0.6
Latent dim 1

Figure 6: Visualizing genera count in 2D latent space

https://arxiv.org/pdf/2202.08345

3 Lipschitz Regularization

Our goal is to achieve a smooth transition, and smoothness in the latent space
is described by a metric called the Lipschitz bound. Liu et al, 2022, proposed a
smoothness regularizer to minimize a learned Lipschitz bound on the latent vec-
tor of a neural field (the implicit function encoded as the NN from the DeepSDF
which maps input 3D coordinates to the SDF values).

To use this method, we added a normalization layer and augmented the
DeepSDF loss function with a simple regularization term encouraging small
Lipschitz.

https://arxiv.org/pdf/2202.08345

Topology Control: Pathfinding for Genus Preser-
vation

Recall that while DeepSDF's can be an advantageous shape presentation, they
are not known for preserving topology. When we ”preserve topology”, what we
really want to do is preserve a topological invariant in deforming shapes. In
our case, we wish to learn a path between two latent codes guided by a genus
classifier (as well as a volume regressor) with the hopes that the topological
guidance provided will help us to meaningfully interpolate between codes.

4 Pathfinding in Latent Space

Suppose you are a hiker hoping to a reach a point A from a point B amidst a
chaotic mountain range. Now your goal is to plan your journey so that there
will be minimal height change in your trajectory, i.e., you are a hiker that hates
going up and down much! Fortunately, an oracle gives us a magical device, let
us call it f, that can give us the exact height of any point we choose. In other
words, we can query f(x) for any position z, and this device is differentiable -
1/ (x) exists!

Metaphors aside, the problem of planning a path from a particular latent
vector A to another B in the learned latent space would greatly benefit from
another auxilary network that learns the mapping from the latent vectors to the
desired topological or geometric features. We will introduce a few ways to use
this magical device - a simple neural network.

4.1 Gradient as the Compass

Now the best case scenario would be to stay at the same height for the whole of
the journey, no? This greedy approach puts a hard constraint on the problem,
but it also greatly reduces the possible space of paths to take. For our case, we
would love to move toward the direction that does not change our height, and
this set of directions precisely forms the nullspace of the gradient.

No height change in mathematical terms means that we look for directions
where the derivatives equal zero, as in

D,f(x) =Vf(z) v=0,

where the first equality is a fact of the calculus and the second shows that any
desirable direction v € null(V f(x)).

This does not give any definitive directions for a position z but a set of
possible good directions. Then a greedy approach is to take the direction that
aligns most with our relative position against the goal - the point B.

Almost done, but the final question is what would we do if the direction
we want to take toward B is orthogonal to the gradient vector? That is, we
should also take some steps toward the gradient, but how much of a stride we

take is also important. Toward this, let x be the current position and Az =
aV f(z) + n, where n is the projection of B — x to null(V f(z)). Then we want
f(z+ Azx) = f(B). Note that

f(B) = f(z+ Az) = f(z) + Vf(z) Az (1)
= f(z) + Vf(z) (aVf(z) +n) (2)
<:>a%—f(|B) () (3)

V(@)

Now we just take Az = %Vﬂx) + Projpun(v f(2)) (B — z) for each
position x on the path.
Results. In figure[7] we present some results regarding how the algorithm fared
in learned latent spaces.

6

2
G
S
4
@
04
X-axis
(a) On a latent to volume space (b) On a latent to space

Figure 7: Path finding via gradients in different contexts

4.2 Optimizing Vertical Laziness

Sometimes it is impossible to hope for the best case scenario. Even when f(A4) =
f(B), it might happen that the latent space is structured such that A and B are
in different components of the level set of the function f. Then there is no hope
for a smooth hike without ups and downs! But the situation is not completely
hopeless if we are fine with taking detours as long as such undesirables are
minimized. We frame the problem as

n—2
argmmz [f@:) = FBIP+AD [(wine = wig1) = (win —),
x; €L,V =1 =1

where L is the latent space and {z;}" ; is the sequence defining the path such
that ;1 = A and z,, = B. The first term is to encourage consistency in the

function values, while the second term discourages sudden changes in curva-
ture, thereby ensuring smoothness. Once defined, various gradient-based opti-
mization algorithms can be used on this problem, which is now imposed with a
relatively soft constraint.

Results. In figure[8] we present some results regarding how the algorithm fared
in learned latent spaces.

2D Interpolated Grid

o 2D Interpolated Grid a0
72
0.396)
8 By | 6.0
s 2 4,8E
0372 7 % 3
i H i 62
0360 & g
i -0.2 -
£ 24
2 - 12
* Yo -axis
(a) On a latent to volume space (b) On a latent to expected genus space

Figure 8: Path finding via optimization in different contexts

4.3 A Geodesic Path

One alternative attempt of note to optimize pathfinding used the concept of
geodesics, or the shortest, smoothest distance between two points on a Rie-
mannian manifold. In the latent space, one is really working over a latent data
manifold, so thinking geometrically, we experimented with a geodesic path algo-
rithm. In writing this algorithm, we set our two latent endpoints and optimized
the points in between by minimizing the energy of our path on the output mani-
fold. This alternative method worked similarly well to the optimized pathfinding
algorithm posed above!

5 Future Work

Genus is a commonly known and widely applied shape feature in 3D computer
graphics, but there’s a whole mathematical menu of topological invariants to
explore along with their preservation techniques! Throughout our research, we
also considered:

e How can certain regularization techniques (e.g. Lipschitz, eikonel, Lapla-
cian) serve to "wrangle” topological features?

e To what extent can alternative approaches like diffeomorphic flows and
persistent homology provide topological guarantees?

MAF230006

Figure 9: Geodesic triangles on manifolds of postive, negative, and zero curva-
ture (respectfully, from top to bottom)

e Would topological accuracy benefit from a non-differentiable algorithm
(e.g. RRT) that can directly encode genus as a discrete property? How
would we go about certifying such an algorithm?

e How can homotopy continuation be used for latent space pathfinding?
How will this method complement continuous deformations of homotopic
shapes?

e What are some use cases to preserve topology, and what choice of topo-
logical invariant should we pair with those cases?

We invite all readers and researchers to consider the above questions as well.

6 References and Codebase

GitHub: https://github.com/paulkry/topology-control

10

	Introduction
	DeepSDF
	Training Field Notes
	Preserving Genus

	Lipschitz Regularization
	Pathfinding in Latent Space
	Gradient as the Compass
	Optimizing Vertical Laziness
	A Geodesic Path

	Future Work
	References and Codebase

